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We have performed total-energy electronic-structure calculations in the density-functional theory for the
divacancy in Si using our real-space finite-difference pseudopotential method. Supercell models containing up
to 1000 sites as well as a cluster model containing 432 atoms are used to simulate the divacancy in an
otherwise perfect crystal. We have found that the resonant bond configuration is the most stable structure, the
small pairing configuration is the next, and the large pairing configuration is the least stable for negatively and
positively charged as well as neutral divacancies in the supercell model. The energy differences among the
three configurations are found to be the order of 10 meV. Considering situations of ESR measurements, we
have also performed the total-energy electronic-structure calculations under uniaxial stress along the �110�
direction. We have found that induced strains alter the energetics and the pairing configurations become most
stable with increasing strains. We argue that the ground state configuration of the Si divacancy is the resonant
bond configuration and the pairing configurations become stable under the uniaxial stress and are detected by
the EPR measurements.
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I. INTRODUCTION

Defects in materials affect properties of the host materials
substantially. In covalent semiconductors, for instance, va-
cancies generate dangling bonds around and thereby induce
deep electron states in the energy gap. Those deep levels
decisively modify transport and optical properties of the
semiconductors, even if the vacancy is a ppm host atoms.

An interesting feature in vacancies in semiconductors is
caused by multiplicity of charge states: When the Fermi level
varies in the energy gap, the deep levels accommodate dif-
ferent numbers of electrons and thus the vacancy becomes
several different charge states depending on the Fermi-level
position. The deep level is occasionally degenerate owing to
high-symmetry atomic configurations around the vacancy.
Partial occupation with electrons of the degenerate deep
level may induce symmetry-lowering distortion around the
vacancy due to the Jahn–Teller effect.1,2 Multiplicity of
charge states therefore leads to a variety of atomic structures
and of resulting electronic properties.

Microscopic structures around the vacancy have been in-
deed studied extensively for silicon.3 Electron spin resonance
�ESR� measurements4–6 along with density-functional
calculations7–11 have clarified that the monovacancy V1 in Si
exhibits pairing-type Jahn–Teller distortion in which each
two of the four neighboring Si atoms are rebonded, being
associated with medium- or long-range lattice relaxation of
surrounding atoms. The change in the Fermi-level position in
the energy gap results in the existence of four different
charge states, V1

+2, V1
+1, V1

0, and V1
−1, each of which is asso-

ciated with or without a particular paring distortion. The
Jahn–Teller energy, i.e., the energy gain due to the Jahn–
Teller distortion, is typically a few tenths of eV.

The divacancy V2 which is also an abundant point defect
in Si has been also studied for many years. Yet, to our sur-
prise, there is no consensus about atom-scale structures of
the divacancy.

Removing two neighboring Si atoms in the diamond
structure generates an ideal �unrelaxed� divacancy V2 where
atomic arrangements are of D3d point-group symmetry �Fig.
1�. The electron states induced by the ideal divacancy are
classified into four states in terms of irreducible representa-
tions of D3d:12,13 a1g and a1u states resonating in valence
bands and doubly degenerate eu and eg states in the energy
gap. For the neutral divacancy, six electrons from the neigh-
boring six dangling bonds occupy the a1g and a1u completely,
and then eu partially. In a case that the pairing distortion
takes place as in the monovacancy due to the Jahn–Teller
effect, the eu splits into a lower bu and an upper au states,
whereas the eg splits into a lower ag and an upper bg states,
as schematically shown in Fig. 2�a�.

However, this naive paring relaxation is inconsistent with
the ESR measurements.12,14–16 The ESR measurements have
detected the positively charged �V2

+� and the negatively
charged �V2

−� divacancies in p-type and n-type Si, respec-
tively. The symmetry of the atomic structures of V2

+ and V2
−

has been determined to be C2h. Moreover, it is shown that the
wave functions of the electron states detected by the ESR
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FIG. 1. �Color online� Schematic view of divacancy. Vacancies
are depicted by dashed circles.
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measurements have amplitudes on a mirror plane in C2h sym-
metry both for V2

+ and V2
−. The mirror plane is the �110� plane

on which the nearest-neighbor atoms labeled with 3 and 6 in
Fig. 1 are located. The wave functions bu and ag do have
amplitudes on the mirror plane, whereas au and bg have node
on the plane. The simple pairing picture depicted in Fig. 2�a�
is thus incapable to explain the ESR data for V2

−.
Watkins and Corbett12 have therefore proposed a large-

pairing �LP� model shown in Fig. 2�b� where paring distor-
tion is exceptionally large so that ag and bu are the states
which are detected by ESR for the positive and the negative
V2, respectively. This model nicely explains the ESR mea-
surements, except for an unclear reasoning for such large
Jahn–Teller splitting due to the pairing.

It is of note that the LP distortion may induce the elec-
tronic structure shown in Fig. 2�c� which is also consistent
with the ESR measurements.

An alternative has emerged from a theoretical side. Saito
and Oshiyama proposed a new relaxation pattern around the
divacancy called the resonant bond �RB� configuration.17

Based on the local density approximation �LDA� in the
density-functional theory �DFT�, they have found that the
pairing of two atoms among three neighboring Si �either the
atoms �123� or the atoms �456�� is absent in the RB configu-
ration and resonant bonds among the three neighbors comes
up instead. Inward lattice relaxation is also accompanied. In
the RB configuration, directions of displacements of neigh-
boring atoms are reverse to the directions in the pairing
configurations so that the ordering of the electronic levels
also become reverse, as in Fig. 2�d�. Saito and Oshiyama
have proposed that the negatively charged V2 is the RB
type with the ESR-detected state being the bu, whereas the
positively charged V2 is the pairing type with again the bu
being detected by ESR on the basis of their total-energy cal-
culations using periodic supercell models with the plane-
wave basis set.17 Subsequent calculations using similar tech-
niques in DFT supports the RB configuration as a ground
state in Si �Refs. 18, 19, and 21� and also in compound

semiconductors.20 The supercell used in these calculations
contain relatively small number of atoms ranging from 64 to
216 atomic sites.

A support for the LP configuration depicted in Fig. 2�c�
has come from another calculation based on the LDA in
DFT. Ögüt and Chelikowsky22,23 has performed LDA calcu-
lations for Si clusters in which boundary Si atoms are termi-
nated by hydrogen atoms. They have systematically in-
creased the size of the cluster, up to the isotropic Si316H198
and the �110�-elongated Si246H186, and found that the LP
configuration, as in Fig. 2�c�, is energetically most favorable
for V2

+, V2
0, and V2

−. They have also found that the LP con-
figuration is not realized in small-size clusters. The calcula-
tional scheme adopted by Ögüt and Chelikowsky is different
from the plane-wave supercell-model calculations mentioned
above: i.e., the real-space finite-difference method in which
kinetic operators are treated by finite difference formula and
all the quantities are computed on grid points in real space.

Apparent discrepancy among several LDA calculations
described above is related to insufficiency of theoretical
methodology in treating point defects in an otherwise perfect
crystal. In the supercell model, point defects are arranged
periodically so that all the electron states including deep
states in the energy gap are delocalized in principle as Bloch
states. In the cluster model, all the electron states decay out-
side the cluster so that continuum states in the energy bands
are not described in principle. It is unclear how the differ-
ence in boundary conditions of electron states affects the
energetics of point defects.24 Further, the size of either the
supercell or the cluster which mimic the point defect in an
otherwise perfect crystal certainly causes ambiguity in the
lattice relaxation and thereby in the energetics.

A practical approach to get rid of the above discrepancy is
to perform both supercell-model calculations and cluster-
model calculations with sufficient number of atoms on equal
footing, and then examine the difference and the agreement
about the relaxation of surrounding atoms and the resulting
energetics. This is the purpose of the present work. We de-
veloped a real-space finite-difference DFT code and per-
formed the total-energy electronic-structure calculations for
both supercell models and cluster models containing V2 in Si.
In the present supercell calculations, the number of atomic
sites ranges from 64 to 1000, whereas the cluster calculations
treat several sizes including the largest cluster treated in the
past. We have found that the RB configuration is energeti-
cally favorable for V2

− in the supercell model, whereas the
small-pairing �SP� configuration is favorable in the cluster
model. The LP configuration is found to be unfavorable both
in the supercell and cluster calculations.

Considering that uniaxial stress is applied in EPR mea-
surements to determine the atomic structure, we have further
performed the total-energy calculations for the negatively
charged V2 under uniaxial stress. We have found that the
pairing configurations, SP and LP configurations, become en-
ergetically favorable under the stress condition. This finding
reasonably explains the discrepancy between the LDA calcu-
lations and the ESR measurements in the past as to the defect
structure.

In Sec. II, we explain a chemical picture of deep states
induced by the divacancy in terms of nearest dangling-bond
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FIG. 2. Schematic views of electron states induced by the diva-
cancy along with corresponding relaxation patterns of surrounding
six atoms. �a� In the pairing distortion, eu splits into a lower bu and
an upper au, whereas eg splits into a lower ag and an upper bg. ��b�
and �c�� The large pairing may cause exceptionally large splittings.
�d� The level splitting in the resonant-bond relaxation. In positively
charged V2, an electron depicted by a solid arrow occupies the
corresponding state, whereas in negatively charged V2 additional
electrons depicted by dashed arrows occupy the states. ag

2 and bu
2

cited in text are depicted as ag and bu here for simplicity.
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orbitals. This provides intuition about the level ordering of
the deep states. Our real-space calculation scheme is de-
scribed in Sec. III. Section IV provides calculated results for
energetics, atomic structures, and electron states of the diva-
cancy in Si. Section V summarizes findings in the present
work.

II. MOLECULAR ORBITAL PICTURE OF DEEP LEVELS

Deep electron states are generally localized around vacan-
cies. It is therefore useful to consider wave functions of the
deep states in terms of linear combinations of nearest
dangling-bond orbitals. The obtained molecular orbital pic-
ture assists in examining the order of the deep energy levels.

Let us consider six dangling-bond orbitals, �1��6, at the
nearest six atoms around the two vacant sites �Fig. 1�. Those
dangling-bond orbitals are arranged to be six basis functions
�� of irreducible representations of C2h point group of V2.
The explicit representation of the basis functions are as fol-
lows:

�ag
= ��1 + �2 + �4 + �5

2�3 + 2�6,
	

�bg
= �1 − �2 + �4 − �5,

�au
= �1 − �2 − �4 + �5,

�bu
= ��1 + �2 − �4 − �5

2�3 − 2�6.
	

For the representations ag and bu, there are two possible
linear combinations. Hence, we reach the following basis for
those four representations;

�ag
1 = �1 + �2 + �4 + �5 + ��2�3 + 2�6� ,

�ag
2 = 2�3 + 2�6 − ���1 + �2 + �4 + �5� ,

�bu
1 = �1 + �2 − �4 − �5 + ��2�3 − 2�6� ,

�bu
2 = 2�3 − 2�6 − ���1 + �2 − �4 − �5� ,

with positive constants � and �.
The corresponding energy level �� of each state is related

to the number and locations of nodes of the basis ��, and the
order of the energy levels is qualitatively predictable in some
cases. The criteria are the following: �1� increasing the num-
ber of nodes of the orbital raise the energy, and �2� nodes on
the plane where atoms �1,2,3� or atoms �4,5,6� in Fig. 1 are
located costs more in energy than nodes between the planes.
Among the six basis functions above, only the ag

1 and the bu
1

basis functions have a node neither on the �1,2,3� nor on the
�4,5,6� plane. The corresponding energy levels are therefore
expected to be lower than other four levels. Since ag

1 and bu
1

are the bonding and the antibonding characters, respectively,
between the �1,2,3� and the �4,5,6� planes, we reasonably
conclude that

�ag
1 � �bu

1 � other energy levels.

The characters of these ag
1 and bu

1 are the same with those of
a1g and a1u of D3d symmetry which are resonant in valence
bands in the ideal V2.

The remaining four states, au, bg, ag
2, and bu

2, which split
from corresponding gerade and ungerade e representations in
D3d symmetry, are expected to appear in the energy gap.
When we consider �au

and �bg
, they have nodes between

atoms 1 and 2 on the �1,2,3� plane and between atoms 4 and
5 on the �4,5,6� plane. Further, the �bg

has a node between
the planes. Hence, it is likely that

�au
� �bg

. �1�

The node in the planes for �ag
2 and �bu

2 are of the same type:
Both have nodes between the atom pair �1,2� and atom 3 on
the �1,2,3� plane and between the atom pair �4,5� and atom 6
on the �4,5,6� plane. Further, the �ag

2 has an additional node
between the �1,2,3� and �4,5,6� planes. We therefore expect
that

�bu
2 � �ag

2. �2�

Further discussion as to the order of the energy levels
depend on the detailed structures of the reconstructed diva-
cancy. In the pairing configuration where atoms �1,2� and
�4,5� are paired, the node between those atoms is energeti-
cally unfavorable. When we consider the gerade representa-
tions, �ag

2 and �bg
, the latter has a node between the atom

pair, whereas the former does not. Then,

�ag
2 � �bg

. �3�

Similarly, between the two ungerade states,

�bu
2 � �au

. �4�

As to the order between �au
and �ag

2, the corresponding two
basis functions have different patterns of nodes to each other.
Hence, the order depends on the amount of the pairing.
When the paring becomes enhanced, the ag

2 state is likely to
be lower. From the discussion above, it is reasonable to con-
clude that the level structure in the pairing distortion is
shown in either Fig. 2�a� or 2�c�. From the discussion leading
to Eq. �2�, the level structure shown in Fig. 2�b� is unlikely.

In the RB configuration, the directions of the displace-
ments of atoms �1,2� and �4,5� are reverse to the correspond-
ing directions in the pairing distortion. Then, Eqs. �3� and �4�
becomes reverse: i.e.,

�bg
� �ag

2, �5�

�au
� �bu

2, �6�

in the RB configuration. The order of �bu
2 and �bg

depends on
the detailed atomic structure and it is difficult to predict from
simple molecular-orbital pictures. Then, we reasonably con-
clude that the level structure in the RB configuration is
shown in Fig. 2�d�, where bu and bg may be reverse depend-
ing on the detailed structure.
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III. REAL-SPACE DENSITY-FUNCTIONAL
CALCULATIONS

Total-energy electronic-structure calculations performed
in the present work are based on the density-functional
theory25,26 with the LDA27 and the generalized gradient
approximation28 �GGA� using norm-conserving pseudo-
potentials.29,30 A standard way to solve the Kohn–Sham
equation, which is a variational equation of the total energy
with respect to the electron density, is to introduce a basis set
to represent effective one-electron states �Kohn–Sham states�
and thus the electron density. In the real-space formulation,31

grids in real space are introduced instead of basis sets and
wave functions, electron density and potentials are computed
at each grid point. Accuracy of the computation is guaran-
teed by systematically decreasing the separation between
grid points. This corresponds to the systematic increase of
the number of plane waves in the plane-wave basis-set ap-
proach and thereby provides practically accurate solutions of
Kohn–Sham equations. We have developed an efficient real-
space code,32 which we use in the present work. The results
obtained by our real-space code agree perfectly with those
obtained by our plane-wave basis-set code.33

In our real-space formulation, the kinetic energy operator
is represented by the high-order finite-difference operator us-
ing values of corresponding functions at nearby grid points.
The order of the finite-difference formula suitable for practi-
cal computations is linked to a choice of the spacing of grid
points. We have examined a variety of possibilities and ob-
tained an optimum set of parameters in which the sixth order
formula using values at 12 nearby grid points in one direc-
tion for the Laplacian operation is adopted with five to six
grid points between adjacent two atomic sites.

One of the advantages in the real-space formulation is its
being almost free from a spell of fast Fourier transform
�FFT�. In the standard basis-set approach such as the plane-
wave basis-set approach, FFT is indispensable in handling
convolutions in Hamiltonian operations. Yet, FFT becomes a
serious burden when we attempt to implement codes on the
parallel architecture due to communications among all pro-
cessors. In the real-space formulation, it is unnecessary to
use FFT in Hamiltonian operations. In calculations of long-
range Hartree potentials, it may be useful to use FFT. Even
for the calculations of Hartree potentials, solving Poisson
equations in real space may be an alternative in massively
parallel computations. In the present version of our code, we
use FFT only in calculating Hartree potentials.

In our parallel code, we divide the target system into
blocks, depending on the available resources. Each processor
is responsible for each block. Values of required functions in
each block are stored in each local memory. Most computa-
tions are performed locally on each processor. Communica-
tions among different processors occur only when the com-
putations of finite-difference operations and inner products
are performed. In the case that we use FFT to compute Har-
tree potentials, it is convenient to store electron density at all
memories and perform FFT at all processors. The computa-
tional cost for FFT for the present size of targets is of small
portion.

Kohn–Sham equations are solved iteratively by either
conjugate-gradient minimization10,34 or residual minimiza-

tion technique.35 The latter technique substantially acceler-
ates our computations since the Gram–Schmidt orthogonal-
ization is unnecessary in minimization iterations. Atomic
geometries are also optimized by the conjugate-gradient
minimization technique using calculated Helmann–Feynman
forces.

To simulate nuclei and core electrons, norm-conserving
pseudopotentials of Troulier–Martins type30 are used with
the Kleinman–Bylander approximation.36 Nonlocality of
pseudopotentials are treated in real space, which has an ad-
vantage in computational scaling with respect to the system
size N �number of atoms�: i.e., O�N2� rather than O�N3� scal-
ing is possible in real-space treatment. In this case, filtering
the high-energy components of the pseudopotentials is im-
portant to reduce the numerical errors. We adopt the mask-
function method37 in the filtering.

The exchange-correlation potential is given by the func-
tional derivative of the exchange-correlation energy with re-
spect to the electron density, and thus, in GGA, contains the
first and the second derivatives of the energy with respect to
the density gradient and to the density itself. Using analytical
expressions for those derivatives in the real-space treatment
may cause numerical inconsistency between the exchange-
correlation energy and potential. To avoid the problem, we
express the exchange-correlation energy as an integral over
real-space grids and obtain the potential as its partial deriva-
tive with respect to the density at each grid point, following
the procedure proposed by Balbás et al.38 in our GGA calcu-
lations.

Another advantage in the real-space formulation is the
flexibility to treat boundary conditions of wavefunctions. In
the plane-wave basis-set approach, supercell models where
all the electron wavefunctions satisfy periodic boundary con-
ditions are imperative. The real-space approach is capable of
treating cluster models as well as supercell models in prin-
ciple. In the present real-space calculations, both supercell
models and cluster models are treated on equal footing,
thereby elucidating reasons for the discrepancy in the past
regarding the defect structure of V2 in Si.

In the present calculations for the divacancy in crystalline
Si, we generate norm-conserving pseudopotentials for Si and
H with core radii of 1.3 and 0.66 Å, respectively. We include
s and d components of the nonlocal projectors with p local
potential for Si and include only local s potential for H.
Corresponding to the core radii, we adopt equal-space grids
with the separation of h=0.38 Å. We have obtained the con-
vergence of total-energy difference within 10 meV with this
spacing. The spacing corresponds to the cutoff energy Ec
=18 Ry in the plane-wave basis-set scheme when we use the
relation Ec= �� /h�2. This scheme provides the lattice con-
stant of 5.38 Å in LDA and 5.48 Å in GGA, which are 0.9%
shorter and 1% longer than the experimental value, respec-
tively. In the present calculations, we use these values for the
lattice constants. The structure optimization has been per-
formed until the remaining forces in the optimized geom-
etries are less than 4 mRy /Å.

We use both supercell models and cluster models. In the
supercell model, we adopt a series of cubic unit cells in
which 64, 216, 512, or 1000 atomic sites, respectively, are
included, and all the atomic positions are relaxed using cal-
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culated forces. Brillouin-zone integral is done using 	 point
sampling. In the cluster model, we adopt a Si246H186 cluster
in which Si atoms within the 13th shell around V2 and addi-

tional Si atoms up to the 25th shell along the direction �11̄0�
are included. The direction is the rebond direction in the
pairing configuration. Hydrogen atoms are attached to the
boundary Si atoms. Both the H and boundary Si atoms are
fixed in the structure optimization processes. The remaining
138 Si atoms inside unconnected with H atoms are relaxed
by using the calculated forces, as is described above, and the
remaining forces in the optimized geometries are less than
4 mRy /Å. This cluster is identical to the largest cluster
adopted in the previous real-space cluster calculations for V2
in Si.22,23 We take a vacuum region around the cluster where
the calculated wave functions decay. We have found that the
vacuum region with a dimension of 6–10 Å surrounding the
cluster is sufficient to obtain converged results. It is of note
that the unit cell of 1000 sites in the supercell model contains
all the Si atoms which are treated in the previous cluster
calculations.

IV. RESULTS AND DISCUSSION

In this section, we present calculated energetics, atomic
structures, and electron states obtained in the supercell model
and in the cluster model. Most of the results presented here
are obtained by the LDA calculations unless stated other-
wise.

In the supercell approach, we take a cubic unit cell and
increase its size from 64 sites to 1000 sites. We have ex-
plored the sufficient supercell size by examining variation of
the atomic structure of V2

− with increasing the supercell size.
The distance between nearest neighbor Si atoms 1 and 2 d12
and the distance between 2 and 3 d23 are the principal struc-
tural parameters. Figure 3 shows the calculated d12 and d23
for the RB, LP, and SP configurations of V2

−. We observe that
sufficient convergence is achieved with the 1000-site super-
cell: For instance, the differences in the calculated d12 and
d23 between the 512-site cell and the 1000-site cell calcula-
tions are 0.01 and 0.02 Å, respectively, in the RB configura-
tion. These differences are already close to the limitation of
accuracy in LDA.

We have also examined overall structural differences be-
tween 512-site-cell and 1000-site-cell calculations. The root

mean square of the coordinate difference of 510 atoms in the
512-site cell and 1000-site cell is 0.01 Å. Further, in the
1000-site-cell calculations, the root mean square of displace-
ments from corresponding unrelaxed sites of outer 488 atoms
which are not included in the 512-site cell is found to be
0.01 Å. The maximum difference in the coordinate for each
atom between the 512-site-cell and the 1000-site-cell calcu-
lations is 0.05 Å. These values are also close to the LDA
limitations. We thus conclude that the obtained atomic geom-
etry around V2 sufficiently converges with the present size of
supercells.

The convergence of electronic level structures are also
examined. Figure 4 shows level positions of the lower three
deep levels in the RB configuration of V2

− as a function of the
supercell size. The differences in the level positions between
the 512-site-cell and 1000-site-cell calculations are
13–35 meV, which is much smaller than expected ambigu-
ities in the LDA calculations. In the cluster models, the sepa-
rations of these energy levels are the same as those in the
supercell model within 0.1–0.2 eV, in spite of the large dif-
ference in the band gap �0.5 and 1.7 eV in the supercell and
the cluster models, respectively�. This means that the magni-
tude of the Jahn–Teller distortions which are determined by
those level separations and stiffness of the lattice can be
described properly both in supercell and in cluster models.

The formation energy Ef
Q of the divacancy V2

Q with charge
Q is defined as

Ef
Q = EV2

Q − E0 + 2�Si + �eQ , �7�

where EV2

Q and E0 are the total energies of the divacancy and
the perfect crystal, and �Si and �e are the chemical potential
of Si atom and the electron. It is plausible to use the total
energy per atom in Si crystal for �Si, and �e is an external
parameter peculiar to each sample. We have calculated the
formation energies of negatively charged �V2

−� divacancy
with the RB, LP, and SP configurations using a standard
procedure in supercell models.39 When �e is at the middle of
the energy gap, Ef

− is 5.9 eV in the present 1000-site-cell
calculations. �Differences in Ef

− among the RB, LP, and SP
configurations are less than 0.1 eV and will be discussed
below.�

Table I summarizes the calculated results for energetics
and bond lengths for negatively charged, neutral, and posi-
tively charged V2 using our supercell models. As for the
negatively charged divacancy V2

−, it is found that the RB

Model size ( # of sites )
100051221664

3.6
3.4
3.2
3.0
2.8
2.6

(Å
)

FIG. 3. Rebond lengths of nearest neighbor Si atoms, d12 �black
markers� and d23 �open markers�, as a function of supercell size in
RB configuration �solid lines with circles�, SP configuration �broken
lines with squares�, and LP configuration �dotted lines with
triangles�.

0.8

0.6

0.4

0.2

0.0

64 216 512 1000
Model size ( # of sites )

au

bu

bg

(eV)

FIG. 4. Deep level positions of V2
− in RB configuration as a

function of supercell size. The lower three deep level positions, au,
bu, and bg, measured from the top of the valence bands are shown.
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configuration is energetically most favorable. The SP con-
figuration is also found to be stable. Yet, its formation energy
is larger than that of the RB configuration by about 10 meV.

We have also found that the LP configuration also exists
when we use supercells in which more than 512 sites are
included. Interestingly, the LP configuration does not appear
with smaller supercells in accord with the previous supercell
calculations.17–19,40 This means that the large scale calcula-
tion is necessary not only for quantitative descriptions but
also for qualitative descriptions of the Si divacancies. The
formation energy of the LP configuration is, however, sys-
tematically larger than that of the RB configuration by
10–20 meV. It is found that the RB configuration is the low-
est in energy, the SP is the next, and the LP is the highest
when it exists, whatever the size of the supercell is.

Results of GGA calculations for negatively charged diva-
cancies by using the 512-site supercells are also shown in
Table I. In GGA, the lattice constant is slightly longer than
that of LDA. We find that the rebond lengths also tend to be
longer than those of LDA. Although the LP configuration is
much higher in energy compared to that of LDA, the follow-
ing conclusion is unchanged by our GGA calculations: The
RB configuration is the lowest in energy, the SP is the next,
and the LP configuration exists and is the highest in energy.

As for the neutral and positively charged V2, we have
found that the RB configuration is again energetically most
favorable. The LP configuration does not appear with the
supercells in which less than 216 sites are included, as it
does not for V2

−. The calculated total energies for the RB
configuration is lower than the LP and the SP configurations
by about 20 meV when we use 512-site supercell. The ener-
getics among the RB, SP, and LP configurations for neutral
and positively charged states obtained in the 512-site super-
cell is likely to hold for the 1000-site supercell since the
convergence with respect to the cell size has been well es-
tablished by calculations for the negatively charged state.

The calculated lengths of the rebonds converge with re-
spect to the cell size in the present supercell calculations, as
shown in Table I. Interestingly, the lengths of the rebonds
show characteristic variation depending on the charge states
and on the relaxation patterns �Table I�. In the SP configura-
tion, the length of the rebond d12 decreases from the posi-
tively charged state to the neutral state. Then, the length
increases from the neutral to the negatively charged state.
This is interpreted by the molecular orbital picture presented
in Sec. II. In the positively charged and the neutral states,
electrons are accommodated in bu

2 state which has a bonding
character between the two pairing atoms. Hence, the rebond
length d12 becomes shorter upon accommodation of an addi-
tional electron in the neutral state. In the negatively charged
state, another electron is accommodated in au state which has
an antibonding character. Thus, the rebond length d12 be-
comes longer in the negatively charged state. Figure 5�a�
shows the highest occupied state for the negatively charged
SP configuration that indeed shows the antibonding character
for the pairing.

In the RB and the LP configurations, the third electron in
the negatively charged state is accommodated in the bu and
ag

2 states, respectively. Both states have bonding characters
between atoms 1 and 2. Thus, the rebond length d12 becomes
short compared with the neutral or the positively charged
state in the RB and the LP configurations. Figure 5�b� shows
the bonding character of the highest occupied state in the
negatively charged LP configuration.

TABLE I. Total energy difference and rebond lengths, d12 and
d23, of divacancy V2 in Si for negatively charged ���, neutral �0�,
and positively charged �
� states. Results from the supercell mod-
els with 64 sites, 216 sites, 512 sites, and 1000 sites are shown
along with the results from the cluster model, Si246H186. The three
relaxation patterns, i.e., the resonant bond �RB�, the small pairing
�SP�, and the large pairing �LP�, are examined. The total energy E is
represented by its difference from that of the RB configuration ERB

for each charge state. In the cluster model, the results in Refs. 22
and 23 are also shown in parentheses.

Model
d12

�Å�
d23

�Å�
E−ERB

�meV�

RB��� 3.59 3.48 0

SP��� 3.49 3.57 +0.4

64-site RB�0� 3.68 3.46 0

supercell SP�0� 3.46 3.57 +5.0

�LDA�
RB�
� 3.69 3.54 0

SP�
� 3.56 3.66 +3.0

RB��� 3.39 3.15 0

SP��� 3.06 3.31 +2.0

216-site RB�0� 3.50 2.95 0

supercell SP�0� 2.80 3.37 +7.0

�LDA�
RB�
� 3.50 3.06 0

SP�
� 2.89 3.42 +18.0

RB��� 3.35 3.11 0

SP��� 3.01 3.29 +6.00

LP��� 2.69 3.32 +13.7

512-site RB�0� 3.48 2.86 0

supercell SP�0� 2.77 3.33 +22.0

�LDA� LP�0� 2.75 3.34 +19.0

RB�
� 3.48 2.88 0

SP�
� 2.80 3.37 +20.0

LP�
� 2.75 3.34 +19.0

512-site RB��� 3.56 3.27 0

supercell SP��� 3.12 3.46 +6.00

�GGA� LP��� 2.79 3.47 +104.0

1000-site RB��� 3.36 3.09 0

supercell SP��� 2.96 3.26 +17.5

�LDA� LP��� 2.69 3.33 +23.7

RB��� 3.40 3.23 0

�3.34� �3.17� �0�
Si246H186 SP��� 3.11 3.35 −15.5

cluster

�LDA� LP��� 2.77 3.35 +42.9

�2.76� �3.30� �−120.0�
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In the neutral and positively charged states, the structures
and the energetics of the LP configurations are similar to
those of SP configurations. In the neutral and positively
charged states, the electrons are accommodated in the bu
states for both SP and LP configurations, so that the character
of the electronic bonding is almost same. The only difference
between the SP and LP is that the level alternation occur in
the highest unoccupied electronic states au and ag �see Fig.
2�.

We have also performed the total-energy electronic-
structure calculations for V2

− using the cluster model. The
cluster we have adopted is Si246H186 in which Si atoms
within the 13th shell around the vacant sites and additional
Si atoms up to the 25th shell along the �110� direction as well
as H atoms attached to the outermost Si atoms are included.
This cluster is as large as the cluster investigated in the
past.22,23 We have found that the three configurations, the
RB, the LP, and the SP configurations, exist in this cluster
model. In the previous cluster calculations in the real-space
formulation using the same size of the cluster,22,23 the SP
configuration is not reported. The obtained rebond lengths in
the present calculations shown in Table I are approximately
the same with those in the previous calculations22,23 within
about 0.05 Å. This small difference may cause the total-
energy difference of the order of 10 meV, judging from our
careful examination using the supercell model.

We have found that the LP configuration is energetically
unfavorable compared with the SP and the RB configura-
tions. This is in accord with the supercell calculations de-
scribed above. However, the most stable configuration is the
SP configuration for this cluster and the RB configuration
which is the ground state configuration in the supercell
model is higher in energy by 15 meV. We have computed the
root mean squares of atomic coordinates between the cluster
model and the supercell model with 1000 atomic sites. The
root mean square values are 0.03, 0.02, and 0.02 Å for the
RB, the SP, and the LP configurations, respectively.

Hydrogen termination in the cluster model is suitable to
remove redundant dangling bonds at the cluster boundary. It
is an artifact, however, and may cause modulation of the

charge density distribution. Comparing the calculated charge
densities in the supercell model and in the cluster model, we
find that electrons prefer to be distributed near hydrogen at-
oms and thus the distribution near the divacancy is also
slightly different between the supercell and the cluster mod-
els. This may be a reason that the RB configuration is the
most stable in the supercell model, whereas the SP configu-
ration is in the cluster model.

A systematic increase of supercell size in the present work
strongly supports the RB configuration as a ground state. The
1000-site supercell contains all the Si atoms in the Si246H186
cluster. Hence, we provisionally conclude that the RB con-
figuration is the ground state in LDA and in GGA in the
density-functional theory.

In the ESR experiments,12 the uniaxial stress is applied to
obtain the direction of the displacement of the nearest neigh-
bor Si atoms. Based on the data, the pairing-type configura-
tion has been proposed. The applied stress in the experiment
is along the �110� direction and the value is about 85 MPa.
When we use Young’s modulus of Si crystal �169.7 GPa
�Ref. 41��, this stress corresponds to the strain of about
0.003 Å. This situation is different from the DFT calcula-
tions presented above.

We have therefore performed total-energy electronic-
structure calculations for V2

− with the RB, the SP, and the LP
configurations under an uniaxial stress along the �110� direc-
tion. In the calculations, we introduce the strain � along the

�110� direction. Consequently, the expansion along the �11̄0�
direction takes place: i.e., the square �001� face of the origi-
nal cubic supercell becomes rhombic. We have used the su-
percell model with 512 sites and examined two strains �
=0.005 Å and �=0.05 Å. Table II shows the calculated total
energies for the three configurations. Even for the small
strain �0.005 Å�, the paring-type configurations �both SP and
LP� are lower in energy than the RB configuration. When the
amount of the strain becomes larger �0.05 Å�, the LP con-
figuration becomes the most stable structure among the three.
This finding that the pairing configurations become energeti-
cally favorable under the uniaxial stress is a key to reconcile
the apparent discrepancy between the ESR experiment and
the present DFT calculations. Even in the small strain of
0.005 Å, substantial portion of V2

− is expected to be the LP
configuration. We thus argue that the ground state configura-
tion of V2

− is the RB configuration and that the LP configu-
ration becomes favorable under uniaxial stress and is de-
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FIG. 5. �Color online� Highest occupied Kohn–Sham orbitals of
V2

− in �a� SP and �b� LP configurations. Contours are plotted on the
�111� plane, which includes the atoms �1,2,3� �or �4,5,6�� shown in
Fig. 1, with the equal difference of 0.01 bohr−3 between the con-
tours. Solid and dashed lines depict the positive and negative val-
ues, respectively. Black balls show the positions of those atoms.

TABLE II. Total energy differences �meV� among the RB, the
SP and the LP configurations for V2

− under uniaxial strains along
�110� direction. The strains are given in Å. The energy is measured
from that of the RB configuration. The supercell model with 512-
site cell is used.

Strain

Total energy
�meV�

Resonant bond Small paring Large paring

0.005 0 −13 −7

0.05 0 −140 −233
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tected by EPR measurement. For the positively charged
divacancy V2

+, we expect that the same stress-induced paring
configuration is responsible for the EPR signal.

V. SUMMARY

We have performed total-energy electronic-structure cal-
culations with the LDA and the GGA in the density-
functional theory for the divacancy in Si. A real-space finite-
difference pseudopotential method has been developed in
order to carry out large-scale calculations that provides un-
ambiguous theoretical results which clarify the discrepancy
among the calculations and the experiments in the past as to
the structure of the Si divacancy. Supercell models contain-
ing up to 1000 sites as well as a cluster model containing 432
atoms are used to simulate the divacancy in an otherwise
perfect crystal. The present LDA calculations with system-
atic increase of the supercell size indicate that the RB con-
figuration is the most stable structure, the SP configuration is
the next, and the LP configuration is the least stable for nega-
tively and positively charged as well as neutral divacancies.
The energy differences among the three configurations are
found to be the order of 10 meV. The LDA calculations with
the cluster model also show that the LP configuration is the
least stable, although the SP configuration is the most stable
in this case. Interesting variations of rebond lengths among
different charge states have been found and interpreted in
terms of the bonding and antibonding characters of the cor-
responding deep levels. We also perform GGA calculations

with 512-site supercells and confirm that the overall conclu-
sion obtained from the LDA calculations is unchanged by the
GGA calculations, indicating that the RB configuration is the
ground state of the Si divacancy in DFT using the supercell
model. Yet the total-energy difference among the three con-
figurations is an order of 10 meV in certain cases which is
almost an extreme of the accuracy in the DFT calculations.

Considering situations of ESR measurements which deter-
mine the directions of the displacements of neighboring at-
oms, we have also performed the total-energy electronic-
structure calculations under uniaxial stress along the �110�
direction. We have found that induced strains alter the ener-
getics and the SP and then the LP configurations become
most stable with increasing strains. Based on this finding, we
argue that the ground state configuration of the Si divacancy
is the RB configuration and the pairing configurations be-
come stable under the uniaxial stress and are detected by the
EPR measurements.

ACKNOWLEDGMENTS

This work was partly supported by grants-in-aid from
Ministry of Education, Culture, Sports, Science and Technol-
ogy �MEXT�, Japan under Contract No. 17064002. Compu-
tations were done at Science Information Processing Center,
University of Tsukuba, at Institute for Solid State Physics,
University of Tokyo, at Research Center of the Computa-
tional Science, Okazaki National Institute, and at Center for
Computational Sciences �PACS-CS�, University of Tsukuba.

1 See, e.g., M. Lannoo and J. Bourgoin, Point Defects in Semicon-
ductors �Springer, Berlin, 1983�.

2 For a review, S. T. Pantelides, Rev. Mod. Phys. 50, 797 �1978�.
3 For a review, Deep Centers in Semiconductors, edited by S. T.

Pantelides �Gordon and Breach, New York, 1986�.
4 G. D. Watkins and J. W. Corbett, Phys. Rev. 121, 1001 �1961�.
5 J. W. Corbett, G. W. Watkins, R. M. Chrenko, and R. S. Mac-

Donald, Phys. Rev. 121, 1015 �1961�.
6 G. D. Watkins and J. W. Corbett, Phys. Rev. 134, A1359 �1964�.
7 J. Bernholc, N. O. Lipari, and S. T. Pantelides, Phys. Rev. Lett.

41, 895 �1978�; Phys. Rev. B 21, 3545 �1980�.
8 G. A. Baraff and M. Schlüter, Phys. Rev. Lett. 41, 892 �1978�;

Phys. Rev. B 19, 4965 �1979�.
9 G. A. Baraff, E. O. Kane, and M. Schlüter, Phys. Rev. Lett. 43,

956 �1979�.
10 O. Sugino and A. Oshiyama, Phys. Rev. Lett. 68, 1858 �1992�.
11 A. Antonelli, E. Kaxiras, and D. J. Chadi, Phys. Rev. Lett. 81,

2088 �1998�.
12 G. D. Watkins and J. W. Corbett, Phys. Rev. 138, A543 �1965�.
13 O. Sugino and A. Oshiyama, Phys. Rev. B 42, 11869 �1990�.
14 C. A. J. Ammerlaan and G. D. Watkins, Phys. Rev. B 5, 3988

�1972�.
15 J. G. de Wit, E. G. Sieverts, and C. A. J. Ammerlaan, Phys. Rev.

B 14, 3494 �1976�.
16 E. G. Sieverts, S. H. Muller, and C. A. J. Ammerlaan, Phys. Rev.

B 18, 6834 �1978�.

17 M. Saito and A. Oshiyama, Phys. Rev. Lett. 73, 866 �1994�.
18 H. Seong and L. J. Lewis, Phys. Rev. B 53, 9791 �1996�.
19 M. Pesola, J. von Boehm, S. Pöykkö, and R. M. Nieminen, Phys.

Rev. B 58, 1106 �1998�.
20 F. El-Mellouhi and N. Mousseau, Phys. Rev. B 71, 125207

�2005�.
21 D. V. Makhov and L. J. Lewis, Phys. Rev. B 72, 073306 �2005�.
22 S. Ögüt and J. R. Chelikowsky, Phys. Rev. Lett. 83, 3852 �1999�.
23 S. Ögüt and J. R. Chelikowsky, Phys. Rev. B 64, 245206 �2001�.
24 A methodology based on the scattering theory is free from ambi-

guity as to the boundary conditions of the electron states: J.
Bernholc, N. O. Lipari, and S. T. Pantelides, Phys. Rev. Lett. 41,
895 �1978�; G. A. Baraff and M. Schlüter, ibid. 41, 892 �1978�.
Determination of the scattering region and its effects on the
energetics are still unresolved: R. Car, P. J. Kelly, A. Oshiyama,
and S. T. Pantelides, Phys. Rev. Lett. 52, 1814 �1984�; 54, 360
�1985�.

25 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 �1964�.
26 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 �1965�.
27 J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 �1981�; D. M.

Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 �1980�.
28 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 �1996�.
29 G. B. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B 26,

4199 �1982�.
30 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 �1991�.

IWATA, SHIRAISHI, AND OSHIYAMA PHYSICAL REVIEW B 77, 115208 �2008�

115208-8



31 J. R. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. Lett. 72,
1240 �1994�; J. R. Chelikowsky, N. Troullier, K. Wu, and Y.
Saad, Phys. Rev. B 50, 11355 �1994�.

32 J.-I. Iwata, A. Oshiyama, and K. Shiraishi, Physica B 376-377,
196 �2006�.

33 For the plane-wave basis-set calculations, we use Tokyo ab initio
program package �TAPP� developed by a consortium initiated at
University of Tokyo: J. Yamauchi, M. Tsukada, S. Watanabe,
and O. Sugino, Phys. Rev. B 54, 5586 �1996�; H. Kageshima
and K. Shiraishi, ibid. 56, 14985 �1997�; O. Sugino and A.
Oshiyama, Phys. Rev. Lett. 68, 1858 �1992�.

34 D. M. Bylander, L. Kleinman, and S. Lee, Phys. Rev. B 42, 1394
�1990�.

35 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 �1996�.
36 L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425

�1982�.
37 L.-W. Wang, Phys. Rev. B 64, 201107�R� �2001�.
38 L. C. Balbás, José Luís Martins, and José M. Soler, Phys. Rev. B

64, 165110 �2001�.
39 J.-W. Jeong and A. Oshiyama, Phys. Rev. B 64, 235204 �2001�.
40 In Ref. 21 Mahkov and Lewis call their paring-type structure the

large paring. Judging from their level structures, however, it
seems that their structure is the small-paring type.

41 H. J. McSkimin, W. L. Bond, E. Buehler, and G. K. Teal, Phys.
Rev. 83, 1080 �1951�.

LARGE-SCALE DENSITY-FUNCTIONAL CALCULATIONS… PHYSICAL REVIEW B 77, 115208 �2008�

115208-9


